






Dark Mode James Luterek



5

Requirements

Requirement eCommerce

Track naughty & nice behaviors. User Profiles

Allow people to send in a list of toys. Wishlists

Have a list possible of toys and gifts Product Information Management (PIM)

Keep track of how many gifts have been 
built by the elves

Inventory

Keep track of deliveries to ensure everyone 
gets either a gift or coal

Carts / Orders

Make sure when using the system people 
experience the joy of the holidays.

Unique front-ends (website, mobile, etc.)



6

Large Scale System

• 8 Billion users

• Yearly activity, but surge in data collection during December

• All fulfillment happens in a single night. (requires high-throughput)

• Users across the world. (global distributed system)

• Every possible language. (multi-language)

• Security Compliance (GDPR, ADPPA, COPPA, etc.)

• Full accessibility (a11y)



7

Role of Architect

• Have a dedicated architect.

• Architecture decisions will impact the entire project and development.

• Choosing the wrong design can create lock-in, an inability to scale, or project failure.

• Be sure the architect is involved at the beginning of the process with Business Owners and Product 
Managers.









2 Trips







14

Vertical Scaling

• Easiest and most common way to scale.

• Adding better hardware or for the cloud increasing capacity by adding more processing power.

• Increase storage, CPU, memory, and other resources.

• May be the best option for specific tasks (i.e. CPU bound calculations)

• Even with the cloud, vertical scaling has clear limits.









18

Horizontal Scaling

• Increased complexity and costs.

• Ability to auto-scale by adding additional servers, containers, etc.

• Can be layered on to the existing system, less downtime.

• Built-in high availability and fault tolerance.

• May be the best option for some tasks (i.e. Network Traffic)



19

Just use the cloud.

• Cloud offerings often create lock-in.

• We may need redundancy between clouds.

• Data residency laws may prohibit certain cloud options.

Instead, we should focus on using industry standard tools. These gravitate towards open-source.



20

Partitioning

• A load balancer can be leveraged to send traffic accordingly.

• For databases either sharding or partitioning must be used.

• Consider logical partitions based on business rules:

• Data residency laws

• Dedicated databases for specific functions











• User Profile
• Wish List
• Product Information
• Search
• Order Information
• Inventory
• Etc.



Each team:

• Full ownership & autonomy
• You build it, you run it
• Focused innovation





A microservices architecture consists of a 
collection of small, autonomous services. Each 
service is self-contained and should implement 

a single business capability.



29

Characteristics of a Microservice

• Services are small, independent, and loosely coupled.

• Each service is a separate codebase.

• Services can be deployed independently

• Services are responsible for persisting their own data or external state.

• Services communicate with each other by using well-defined APIs

•

• Owned by a small team.





31

Team structure is equally important.



32

This creates a single dependency

Sharing a database



33

Be sure teams can work and deploy 
independently of other teams.

Layered Service Architecture



34

Service 
Version

?.?.?

API Contract / Version

Each microservice should have versioning.

Lack of Internal Versioning



35

DevOps, CI/CD, Monitoring, Container 
Orchestration become more important.

Lack of Automation



36

Technology



37

k8s

Services

CLIENT Products Service

Orders Service

User ServiceUser Service
User Service





Traditional 
Server-Rendered

Website

vs

Single-Page
Application

(SPA)



Image Service (DAM)

Product Service

Inventory Service





43

k8s

Backend For Frontend

Transitional App Products Service

Orders Service

User ServiceUser Service
User Service

BFF



GRAPHQL AS AN AGGREGATION SERVICE

Web APP Mobile APP Other

GraphQL as
Aggregation Service

Commerce Search Identity MarketingTaxes Payment Shipping



45

GraphQL Pain Points



46

GraphQL Benefits



47

Enter Open API Spec (aka Swagger)

• Writing the spec first ensures proper API design and an API-first approach.

• Specification provides a document similar to introspection, outlining the REST interface.

• Creates better tooling by generating Docs, SDKs, and more.

• Provides better versioning by tracking changes across all services.



48

k8s

Services

Transitional App Products Service

Orders Service

User ServiceUser Service
User Service

BFF



49

k8s

Services

Transitional App Products Service

Orders Service

User ServiceUser Service
User Service

BFF



50

k8s

Services

Transitional App Products Service

Orders Service

User ServiceUser Service
User Service

BFF



51

k8s

Services

Transitional App Products Service

Orders Service

User ServiceUser Service
User Service

BFF

























63

k8s

Services

Products Service

Orders Service

User ServiceUser Service
User Service

Transitional App

BFF



64

Services

Transitional App

BFF





C O N N E C T

/ j l u t e rek / j a mes lut erekI n/ j a mes lute rekJ a mes . Lute rek@ela st ic path .co m


